The Klamath-Appalachian Connection

In the Tertiary, beginning around 65 million years ago [Ma], a temperate forest prevailed unlike any other in Earth’s history. Referred to as the Arcto-Tertiary forest—existing on a landmass that would soon become North America, Europe, and Asia—a blending of conifers and broad-leaved trees dominated the landscape. With continental drift and climate change, the offspring of these great forests were fragmented. Over time, ice ages came and went, causing a change in flora as increasingly dry conditions became more common. The descendants of the Arcto-Tertiary forest became less extensive and more isolated. These progenitors have remained, finding refuge in the higher and cooler regions which maintained a climate more similar to that of the early Tertiary and creating, today, a strong Klamath-Appalachian Connection (see R. H. Whittaker 1961).

Klamath-Appalachian Connection
Map of the glacier maximum during the Pleistocene and the location of the mountains under discussion.
Continue reading “The Klamath-Appalachian Connection”

Relearning the Southern Siskiyous

I am slowly learning about some of the shortfalls my training as a western scientist has had on my ability to interpret vegetation communities of the Klamath Mountains. What I am learning, that was never properly taught in my schooling, is that everything we see today in the Klamath Mountains was affected, to some degree, by long-term human habitation over the past ~9,000 years. For example, up north in British Columbia’s coastal temperate rainforest Fisher et al. (2019) found that the plant communities around village sites had different plant assemblages than control sites and were dominated by plants with higher nutrient requirements and a cultural significance. Consider this next time you look at an oak woodland on a river bench

Another major misconception taught in western science is the description of the assumed wild and wilderness as absent of human impact–when this is far from the truth. Much of what we have designated as wilderness was sculpted by Native People’s stewardship. For example, numerous travel routes were maintained for securing basketry, medicine, food resources, or reaching ceremonial sites (see map below).

Continue reading “Relearning the Southern Siskiyous”

Klamath Mountains Winter Webinar Series

I am excited to announce we are approaching the publication of a book 5 years in the making. As the co-editor and author of several of the chapters I am more excited for this book than any other I have written or published. To launch the approach to publication, we are offering a winter webinar series where chapter authors will present some of the highlights from their work.

Continue reading “Klamath Mountains Winter Webinar Series”

Willis Jepson’s Siskiyou Expedition

I recently came upon resource created in 1907 during a trans-Klamath adventure to explore the region and document its plants. Willis Jepson’s Siskiyou Expedition began in Yreka on July 1st and ended back in Etna on July 25th. Over that time the expedition team traveled from the eastern Klamath to the coast—and back again—using a combination of routes including poorly developed roads, the Kelsey Trail, river corridors, and portage boats guided by Karuk men. I encourage you to read more of Jepson’s journal and his colorful descriptions of the plants and places along the way. The journal offers an ecologist’s view, 110 years back, to a northwest California vastly different than today.

Willis Jepson's Siskiyou Expedition journal
A scan of the first pages of Willis Jepson’s Siskiyou Expedition journal. This was recently digitized and translated courtesy of a Jepson Herbarium citizen science project. Copyright © 2009 Regents of the University of California.
Continue reading “Willis Jepson’s Siskiyou Expedition”

Klamath Mountain Peatlands

…or Fabulous Fen Photographs

This article was influenced and inspired by Gordon Leppig’s California Wetlands Fremontia.

The slow movement of water through a fen builds, over long periods of time, to the formation of peatlands. The formation of peatlands requires a combination of processes that most commonly occur in flat areas in both tropical and boreal regions. Because of variable topography, geology, and even water chemistry in the mountains, peatlands are generally rare.

In temperate mountains, rare peatlands form over mellennia if perennial soil saturation, low mineral soil deposition, erosion rates, and net storage of soil carbon resulting from plant productivity complement each other perfectly. In arctic and alpine environments, the formation of peat is often associated with peat moss (Sphagnum spp.). In the temperate regions peatlands are usually dominated and formed by sedges (Carex spp.).

Continue reading “Klamath Mountain Peatlands”